Fractures and hydrothermal alterations: a review of fluid pathways for geothermal applications

Part 1 – Fracture networks, various examples
Outlines

Part 1- Why study fracture networks?

Part 2- How to identify fracture networks?
 A- Field work B- Well logs
 C- Analogues D- Modelling

Part 3- How to characterize fracture networks?
 A- Fractal analysis B- Statistics
 C- Petrophysical properties

Conclusion

Thanks for attention
1-Why study fracture networks?

Fractures = pathways for fluids, interconnected

Evidence from surface: weathering

Here, fluid = rainwater

Staple Tor, Dartmoor (UK)
Subsurface, fluids:
- rainwater
- sea water
- magmatic fluids

Temperature gradient

Hot fluid harnessed for geothermal production

Flows through fractures and wall-rocks
hydrothermal alteration (R. Hébert)
2-How to identify fracture networks?

A – Field work

Guadeloupe (Lesser Antilles) andésite

Joints m-scale

Thin section μm-scale

Navelot et al., 2018
Inside geothermal reservoirs, fractures cannot be seen directly.

Faults and fractures km-scale

McNamara et al., 2017
Soultz-sous-Forêts, Rhine Graben (France)

EGS site: electricity, 1.5 Mwe (geothermies.fr)

3 deep wells: GPK-2, GPK-3 and GPK-4 (only 2 in 2004)

Dezayes et al., 2004, GRC
Soultz-sous-Forêts

Complex zone (A)
63-78 % of flow
Hydraulic stimulation

Single fracture (B)
4% of flow
Hydraulic stimulation

Dezayes et al., 2004, GRC
New Zealand, Taupo volcanic zone

BHTV, well RK32

McNamara et al., 2017
C - Analogues

Talk by G. Trullenque

J. Klee, MEET PhD
D - Modelling

Soultz-sous-Forêts

Sausse et al., 2010
Fluid flow simulation

Egert et al., 2020
3-How to characterize fracture networks?

Soultz-sous-Forêts EGS site
Granite

Fractures grouped into clusters separated by non-fractured zones

Fractal analysis

Ledésert and Hébert, 2020
After Dezayes et al., 2004
3-How to characterize fracture networks?

Fractures grouped into clusters separated by non-fractured zones

A – Fractal analysis

Fractures grouped into clusters separated by non-fractured zones

EPS-1 well

Fractal analysis for quantification and prediction

Ledésert et al., 1993
Analysis line: probability of intersection of fractures

x: variable characterizing the length of measure unit
P: probability
D: Fractal dimension, between 0 and 1
P = x^{-D}

Quantification:

Low D: clustered events, heterogeneous distribution along the well

High D: homogeneous distribution
Prediction of fracture occurrence

P: probability of occurrence of a fracture

X: distance from the last fracture

Higher probability when fractures are clustered
B – Statistics

Surface area occupied by discontinuities (%)

Surfacic intensity of discontinuities P21 (cm/cm²)

Guadeloupe (Lesser Antilles)
Andésite
Azzimani, 2019, MSc thesis

See Postdoc A. Chabani, MEET
C – Petrophysical properties

Soultz-sous-Forêts, granite

Fractured zone

EPS-1 well log

Ledésert and Hébert, 2020, Geosciences
Soultz-sous-Forêts
GPK-1 well

J. Sausse et al., 2006
On samples in the lab:

- Density
- Permeability
- Porosity
- Thermal conductivity
- P wave velocity

Combination of parameters
Correlations

Flow pathways

After Navelot et al., 2018
4- Conclusion

Conceptual model of fluid circulation

Example: Guadeloupe

+ geophysics \rightarrow exploratory well

After Navelot et al., 2018
Thank you very much for your attention

• This work was performed in the framework of the H2020 MEET EU project which has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 792037
Fractures and hydrothermal alterations: a review of fluid pathways for geothermal applications

Part 2 – Hydrothermal alteration
What is Hydrothermal Alteration (HA)?

« hot » fluid/rock interactions
(Temperature, fluid composition, fluid/rock ratio, time, permeability, Pressure)

Rock transformations

Petrological changes
- Chemical/Mineralogical reactions
 - dissolution/precipitation
 - transformation of primary minerals (−) \(\rightarrow\) secondary hydrous minerals + (clays)
- microstructure changes

Petrophysical changes
- density
- porosity
- permeability
 \(\rightarrow\) channel/barrier
Where does HA take place?

Anywhere with heat source + water + permeability = Hydrothermal systems

Heat source: thermal anomaly
- magmatic contexts
- metamorphic contexts
- Rifting

Fluids
- Magmatic
- Metamorphic
- meteoric

Permeability
- Fracture
- Fault
- joint
- unconformity
- grain boundary

Oceanic metamorphism

Fluid assisted retrogression of eclogite into amphibolite
Where does HA take place?

Anywhere with heat source + water + permeability = Hydrothermal systems

Heat source: thermal anomalie
- magmatic contexts
- metamorphic contexts
- Rifting

Fluids
- Magmatic
- Metamorphic
- basin

Permeability
- Fracture
- Fault
- joint
- unconformity
- grain boundary

HA is a common phenomenon in geothermal system where there is
Heat + fluids + Permeability (if not EGS)

+ Impermeable layer → Caprock

→ Geothermal ressource
HA produces « alteration zones »

Characterized by several features visible at ≠ scales:

- Color changes

Fossil geothermal system of Terre de Haut

Soultz granite

Unaltered granite

HA granite

Massart et al. 2010

http://www.geolab.unc.edu/
HA produces « alteration zones »

Characterized by several features observables at ≠ scales:

- Color changes
- New (set of) phases (mainly hydrous minerals → clay minerals)

Toki granite (Nishimoto & Yoshida, 2010)
Hydrothermal zones

Fossil geothermal reservoir in andesites (Les Saintes)

→ New phases occur either in the whole rock and/or structures

« rock » controlled (e.g. grain boundaries, porous network) Structurally controlled (e.g. fracture, vein, etc...)

Magmatic texture preserved
Primary minerals are ± transformed into secondary minerals

Fracture infillings

Beauchamps 2019
HA produces « alteration zones »

Combination of Structurally and rock Controlled HA

Open fracture filled with unsolidified compacted green clay without pores

Unaltered granite

ALTERATION HALO

Outer zone:
Little change of color and beginning of primary phases breakdown (Plg, Bt)

Propylitic zone:
Green
Secondary phyllosilicates Chl, Corr (Chl/S)
Bt → Chl + Corr + Ill

Phyllic zone:
White
Large amount of phases II
Microcracks of Ill + Qtz

(Nishimoto & Yoshida, 2010)
Schematic scenario of the HA process of a granite along a fracture

Outer zone:
Plg breakdown from core to rim → pore f m inner part of grains
Bt → Chl + Corr along cleavage

Propylitic zone:
Secondary phyllosilicates Chl, Corr (Chl/S)
Bt → Chl + Corr + Ill

Phyllic zone:
Kfs breakdown
Plg strongly illitized precipitation of Ill + Qtz in microcracks indicating that fluid infiltrated along this pathway.
Bt and alteration products (chl + Corr)
Dissolution pores filled by Qtz

(Nishimito & Yoshida, 2010)
How to identify a rock underwent HA?

Evidences of HA

- Color changes
- Veins
- Mineralized fracture network

HA

\[\text{Hydrothermal fluids (T> 100°C?)} \]
\[\text{Lateral and upwards} \]
\[\text{Saturated with some silicate components} \]
\[\text{Unsaturated with others as T } < \]

WEATHERING

Fracture

\[\text{Meteoric water} \]
\[\text{Downwards} \]
\[\text{Unsaturated in silicate mineral comp.} \]
\[\text{In <-> with CO2 atm.} \]
How to identify a rock underwent HA?

Evidences of HA

- Color changes
- Veins
- Mineralized fracture network
- Occurrence of secondary key phases (indicator minerals)

Clay minerals but not only
Some ubiquist minerals (calcite, quartz)
Some specific minerals (e.g. adularia, alunite, …)

Noble Hills (source J. Klee)

White & Hendequist, 1995
How to identify a rock underwent HA?

Evidences of HA

- Color changes
- Veins
- mineralized fracture network
- Occurrence of secondary phases (key minerals)
- Alteration zones

Common zonation of clay minerals: Sme → Ill → Chl

Beauchamps et al., 2019
Exemple of Soultz-sous-Forêts

Upper Rhine Graben (east of France)
Thermal anomaly (~200°C – 5 km)

Fractured and altered granitic geothermal reservoir
Deep exchanger (4500-5000 m)
Triplet (GPK2p-GPK3i-GP4i)

Geothermal fluid flows through a fracture network along which HA takes place

Main hydrothermal phases are Calcite and Illite

(modified from Dèzes et al., 2004)
Exemple of Soultz-sous-Forêts

GPK2 borehole

- Fluid flow is fracture zone controlled
- Fracture zones correspond to HA zones
 - Most conductive: High Cal and Ill contents and granite highly altered
 - Less conductive: No Cal, low to moderate content of Ill, granite with low degree of alteration
- Unaltered granite do not show abnormal calcite content or occurrence of Ill
- HA zones (Cal + Ill) with no fluid flow, granite with low degree of alteration

Hebert & Ledesert, 2012
The relationship between calcite content and fluid flow differs from one well to another → different permeability properties → ≠ stages of HA

- Very conductive → Open fractures with alteration halo (illitization) and calcite precipitation
- Poorly or not conductive → Clugged or in way of clugging fractures. Low fluid flow through remaining space of fracture zone or in the HA damage zone

Hebert & Ledesert, 2012
Exemple of Soultz-sous-Forêts

- Present-day permeable calcite vein = Open Fracture (Channel)
- Paleopermeable HA zone = illite sealed
- Present-day permeable illitized zone = HA zone (porous)
- Calcite vein almost sealed or paleopermeable vein

Modified from Glaas et al., 2019
Conclusion about HA in geothermal context

- Studying HA provides a better understanding of (past and present) fluid flow within the reservoir

- Characterization of sealing/clugging secondary phases allows to choose appropriate stimulation to remove clogging phases
 → enhancing or maintaining the performance of the reservoir through its lifetime

Evolution of the productivity/injectivity rate as function of the chronological stimulations

Hebert & et al. 2011

Soultz-sous-Forêts

Initial poor productivity/injectivity rates

High amount of calcite precipitation within fracture zones

→ Soft HCl stimulation improve connectivity by ~43%
Thank you for your attention