

Deep fractured EGS, concepts & reservoir assessment in the Upper Rhine Graben

February 17th 2021 Dr Albert Genter Es-Géothermie

MEET Project – Geothermal Winter School – February 2021

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 792037

Motivation

EGS: Enhanced/Engineered Geothermal Systems

EGS: a geothermal concept or a technology?

Focused on Upper Rhine Graben: operating EGS plants

From concrete examples from the URG

- Concept evolution based on Soultz-sous-Forêts / Rittershoffen sites (France)
- Naturally fractured reservoirs with hydrothermal alteration

Stimulation and geothermal exploitation of fractured reservoir

Who we are?

Geothermal operator in Alsace (Central Upper Rhine Graben, France)

- Electricité de Strasbourg ES, main energy company in the Strasbourg area (Alsace, France)
- ES co-owners of two operational geothermal plants in the Central Upper Rhine Graben (URG): Soultz-sous-Forêts and Rittershoffen
- ES is developing new geothermal projects in the URG
- ES-Géothermie (ESG), subsidiary of ES, scientific and technical staff specialized in deep geothermal energy
- ESG is exploiting the two geothermal plants

Two operating EGS plants

Fractured granite reservoirs with very saline brines

Brines, ~100g/L, NaCaCl Lithium 160mg/L 1.7MWe for electricity production Three wells @ 5000 m

Brines, ~100g/L, NaCaCl Lithium 180mg/L 24MWth for a heat application Two wells @ 2 500m

Q>30L/s T>150° C

Q>70L/s T>168° C

Life cycle of an industrial EGS project

EGS concept/technology

From HDR to EGS

From Stefan Wiemer (2018)

Soultz project presentation

Location

- Geothermal anomaly in the Upper Rhine Graben
- Non volcanic area
- No surface hydrothermal manifestation
- Unconventional reservoirs: deep-seated granite

Technology

- 4 deep geothermal wells (3.6 & 5 km): 200°C @ 5 km depth
- 1st binary geothermal plant in France
- Organic Rankine Cycle (ORC) technology: 1.7 MWe
- Down-hole submersible pump: Long Shaft Pump (LSP)
- Feed-in tariff in France
- Geothermal electricity 246 € per MWh
- No heat application on site

Down-hole Pump

One of the highest geothermal anomalies in Western Europe

Soultz HDR concept: no exploration

1st step: from 1987 to 2003: the Hot Dry Rock concept

- Hydraulic fracturing
- Water injection
- Hard and tight rocks
- Induced seismic cloud
- Correlation with permeability
- Artificial heat exchanger

2nd step since 2004: on the route of EGS

- Hydraulic & chemical stimulations
- 3 vertically distributed reservoirs? Or 1 large reservoir?
- Hydrothermally Altered & Fractured Granite Zones
- Occcurrence of natural brine
- Low natural permeability
- Connexion between the geothermal wells with the reservoir
- EGS concept or technology?

The Upper Rhine Graben

West Rift European System

Dèzes et al., 2004

Temp @ 2000 m depth from LIAG

Upper Rhine Graben activity

Over the last 30 years:

- 9 geothermal projects
- 23 wells drilled
- >75 km of geothermal boreholes were drilled

Status on 2021

- 3 geothermal power plants and 2 heat plants operating
- 2 projects under development in Strasbourg area but stopped due to recent felt induced seismic events (M>3)
- 6 exploration permits for geothermal energy
- 3 licences for lithium extraction

URG reservoirs

Temperature anomalies

- Localized around local normal faults / strike slip faults
- Traces of the fluid circulations related to these faults

Geothermal reservoirs

- Muschelkalk limestone
- Buntsandstein and/or Permian clastic sandstone
- Palaeozoic granitic basement

Fluid circulation in natural fractures

- Hydrothermal alteration & fractured zones
- In the granitic basement: 3 types of alterations
 - propylitic alteration, argillic alteration, paleoweathering alteration

Reinecker et al., 2019

Local geology in Northern Alsace

Open-hole section: fractured Triassic sandstone & fractured Carboniferous granite Geothermal target: a local normal fault in the basement Stress field: transitional from normal faulting to strike-slip

Upper Rhine Graben tectonics

Glaas, 2021

Vintage exploration from 2D seismic survey

Soultz Horst

Transverse seismic line

Geothermal target is a deep crystalline rock

Soultz monzogranite

Core K21, GPK-1 (3510 m)

Monzogranite

Crystals of FK (1 to 4 cm)

Granite matrix: plagioclase, quartz, biotite and hornblende

Accessory minerals: magnetite, zircon, apatite, titanite, hematite, leucoxene

Hydrothermal deposits within fractured granite

Geothermal Winter School 2021

1mm

Orientation of fractures

Orientations of deep fractures are not // to main Rhine graben faults

Geothermal Winter School 2021

Present-day stress field

Regional scale: σ H NW-SE, Compressive event Soultz: Borehole measurements, σ H NNW-SSE NNW-SSE fractures are critically stressed

Borehole scale (Soultz): σ H N170E (Valley, 2007) Transitional stress field between normal and strike-slip Low to moderate seismic hazard araa Last natural earthquake in 1952 with M4.8@ 20km SE of Soultz

Thermal profiles @ Soultz

0

Fractured & altered granite

Natural circulations in fractured & altered zones Top basement is a geothermal resource target Fractured sandstones

Hydrothermal alteration

Pervasive Alteration: Standard monzogranite

BiotiteChloritePlagioclaseCorrensiteGenter, 1989

Native brine composition

Fluid Sample	Na	K	Ca	Mg	Cl	SO₄	NO ₃	SiO ₂	Br	Sr	Li
06/02/2013	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l
GPK2-PROD	25200	3360	7440	142	57300	228	<2	174	237	418	169
	F	PO ₄	B	NH ₄	Fe _{total}	Mn	Ba	As	Rb	Cs	Zn
	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l
	6	4	41	24	30	18	26	11	18	11	3
	Al µg/l 66	Pb µg/l 66	Cd µg/l 14	Cr µg/l 5	Cu µg/l <1	Ni µg/l 1	Hg μg/l <0.4	Αg μg/l 0.8	U µg/l <0.05		

(Sanjuan, 2010)

- Na-Cl-Ca dominated brine
- TDS \approx 97 g/l, Density = 1.065 g/cm³ (20°C)
- pH ≈ 4.7-5.0
- Gas Liquid Ratio of 1:1 (mainly CO_{2,} 85%, N₂, 10%, and CH₄, 2.5%)

 \rightarrow Soultz operation conditions are highly aggressive and corrosive

Hydraulic stimulation

GPK3, 2003 µseismic events M>1

Dorbath et al., 2009

Cuenot et al., 2008

The Rittershoffen project (France)

Local geology

Open-hole section: fractured Triassic sandstone & fractured Carboniferous granite

Geothermal target: a local normal fault in the basement

Rittershoffen project: main technical phases

Exploration and well targeting

Thermal anomaly identified from old oil wells

Reprocessing and interpretation of 5 old seismic lines

Acquisition of 2 news lines

PSDM processing of all lines

3D Structural modeling with Petrel

GRT-1 vertical @ 2600m MD GRT-2 deviated well @ 3200m MD

Deep fractured reservoir: clastic versus granite

Temperature profiles @ Rittershoffen

Focus on temperatures in the reservoir

GRT-1 well testing & development strategy

Hydraulic stimulation of GRT-1

- Objective: increase reservoir permeability using hydro-shear processes
- High rate water injection with stepwise rate (Qmax 80L/s)
- Real-time seismological monitoring

Results: Injectivity increase by a factor 2

Seismological activity during GRT-1 hydraulic stimulation

- Real-time location
- > 300 events automatically picked and located
- Max magnitude 1.6 Ml
- Max Well-Head Pressure: 30 bar

48.94°N 7.94°E 7.96°E 7.98°E 7.92°E OBER 25/04 08:38 25/04 06:43 STUN 48.92°N KUHL 25/04 04:48 25/04 02:52 48.90° 25/04 00:57 ĕ 🎖 48.88°N 24/04 23:02 M = 0MI=124/04 21:07 MI=248.86°N 0 1 2 3 4 5 24/04 19:12 Prof. (km) (km) Prof. 24/04 17:16

Geothermal Winter School 2021

Critical threshold (MI 1.7) never reached

From Maurer et al. 2020

Conclusions

EGS technology for URG:

There is a kind of continuum between an EGS well (ex GRT1) and a hydrothermal well (ex GRT2) Fluid flow signature in the basement

High fracture density & low geothermal gradient in the top basement
Argillic alteration with illite in the basement (damaged zone)
Complexe architecture of fractured zones (fault core, quartz vein)
Induced seismicity during stimulation but with very low magnitude
Induced seismicity during exploitation but with very low magnitude at reinjection side

Geothermal energy from deep fractured granite reservoir is a reality

Electricity, heat, lithium, greenhouses, industrial applications are possible!

Thank you very much for your attention

This work was performed in the framework of the H2020 MEET EU project which has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 792037

Questions

Soultz-sous-Forêts

Question 1: The Soultz geothermal project

The Soultz site is located within a high geothermal anomaly inside the Upper Rhine Graben, with a temperature of about 110°C at 1 km depth. This first km of sediments is dominated:

a) By a convective thermal regime.
b) By a conductive thermal regime.
c) By both convective and conductive thermal regimes.

Question 2: The Soultz geothermal project

The EGS Soultz site is under exploitation by using one production well, GPK2, and two injection wells, GPK3 and GPK4. In 2019, about 800'000 m³ of geothermal water were circulated within the geothermal installation. Where comes from this water?

a) Fresh water is injected from water supply.	
b) Natural brine is permanently pumped in the reservoir and re-injected.	
c) Natural brine is not sufficient and fresh water is regularly injected.	

Questions

Rittershoffen

Question 3 : Power or heat production?

The Rittershoffen geothermal project, located close to Soultz, was designed?

a) To produce power generation with a gross electricity capacity of 2.4MWe	
b) To produce heat for a bio-refinery located 15 km away from the geothermal wells	
c) To produce geothermal fluids with a surface temperature range of 160-170°C	
and a production flow rate of 70 L/s	

Question 4 : Top basement

At Rittershoffen, the geological interface between the sedimentary clastic cover and the top crystalline basement is exploited by deep boreholes.

a) At Soultz, the sediment-basement interface is localized at 2.2 km depth	?
b) At Rittershoffen, the sediment-basement interface is deeper than at Soultz	?
c) At Rittershoffen, the geothermal fluid is much more saline than at Soultz	?